وبلاگ

توضیح وبلاگ من

تعیین ماتریس پاسخ آشکارسازهای 2 اینچی و 3 اینچی CsI(Tl) و واپیچش طیف گاماهای …

 
تاریخ: 02-12-99
نویسنده: فاطمه کرمانی

در یک بلور جسم جامد، برهم‏کنش میان ذره باردار حامل انرژی و الکترون‏ها باعث کنده شدن الکترون از محل خود در شبکه بلور می‏شود. الکترون جابجا شده از خود حفره‏ای باقی می‏گذارد. هنگامی که الکترونی در این حفره می‏افتد نور گسیل می‏شود. بعضی از بلورها نسبت به این نور شفاف هستند. بنابراین عبور ذره باردار حامل انرژی در بلور با سنتیلاسیون یا سوسوزنی نور گسیل شده از بلور علامت داده می‏شود. این نور در یک آشکارساز سوسوزن به یک تپ الکتریکی تبدیل می‏شود. نخستین جامدی که با استفاده از این روش به عنوان یک آشکارساز ذره به کار رفت سوسوزنی بود که رادرفورد در سال 1910 میلادی، در آزمایش‏های خود در زمینه‏ی پراکندگی ذرات آلفا مورد استفاده قرار داد. در وسیله مورد استفاده او، ذرات آلفا به یک صفحه‏ی سولفور روی برخورد کرده و تولید نور می‏کردند، و به کمک یک میکروسکوپ شمرده می‏شدند. این روش فوق العاده ناکارا، بی دقت و وقت‏گیر بود و حدود 30 سال کنار گذاشته شد و روش استفاده از شمارنده‏های گازی که در آن شمارش به طور الکترونیکی انجام می‏شد، جانشین آن گردید. عیب شمارنده‏های گازی بازده کم آنها برای

دانلود مقالات

 بسیاری از تابش‏های مورد نظر در فیزیک هسته‏ای است. دلیل اصلی آن هم این است که برد یک فوتون گامایMeV1 در هوا حدودm100 می‏شود. در آشکارسازهای حالت جامد به دلیل چگالی‏های بیشتر نسبت به آشکارسازهای گازی، احتمال جذب در آشکارسازی با اندازه معقول افزایش می‏یابد. لذا با پیشرفت الکترونیک و دستگاه‏های تقویت نور، استفاده از سوسوزن‏های جامد رونق یافت [1]. در سال 1944 میلادی لوکان و بیکر فتومولتی‏پلایر را جانشین روش استفاده از چشم غیر مسلح نمودند و کمی بعد کالمن نفتالین را جانشین کریستال کوچک و نازک zns نمود. این دو تغییر انقلابی را در آشکارسازی با استفاده از سوسوزن‏ها، ثبت و تجزیه و تحلیل پالس‏هایی که توسط هر یک از ذرات تابش به وجود می‏آیند، امکان پذیر ساخت[2]. در سال 1948 رابرت هافستادر[1] برای اولین بار ثابت کرد کریستال یدور سدیم، که مقدار ناچیزی تالیم به عنوان ناخالصی به آن اضافه شده است، در مقایسه با مواد آلی که ابتدا مورد توجه بودند، نور بیشتری تولید می‏کند[3]. به دنبال این کشف آشکارسازهای سوسوزن در دهه 1950 ساخته شدند و مورد استفاده قرار گرفتند. از زمان کشف رابرت هافستادر تاکنون ترکیبات سوسوزنی مختلفی اعم از سوسوزن‏های آلی وغیر آلی که دارای بهره‏ نوری و زمان واپاشی سریع هستند، در آزمایشگاه‏های مختلف مورد مطالعه قرار گرفتند[2]. به دلیل اهمیت کاربرد سوسوزن‏ها در صنعت و پزشکی دامنه تحقیق در زمینه کشف ترکیبات سوسوزنی جدید گسترده است. امروزه طیف سنجی پرتوهای گاما با استفاده از سوسوزن‏ها به یک علم جامع و پرکاربرد در بسیاری از حوزه‏های تکنیکی تبدیل شده است. NaI(Tl) تقریباً اولین محیط آشکارسازی جامدی بود که برای طیف سنجی پرتوهای گاما مورد استفاده قرار گرفت، و همچنان رایج‏ترین ماده سوسوزنی برای طیف سنجی پرتوهای گاماست. یدور سزیم نیز هالید قلیایی دیگری است که شهرت زیادی به عنوان یک ماده سوسوزن دارد. این ماده به صورت تجاری هم با فعال ساز سدیم و هم تالیم موجود است و ویژگی‏های سوسوزنی حاصل از این دو حالت با یکدیگر متفاوت است. مزیت CsI(Tl) نسبت به NaI(Tl) این است که  حساسیت کمتری نسبت به رطوبت داشته و سخت‏تر است،و در نتیجه توان تحمل بیشتری در برابرقرارگیری در معرض شوک‏ها و ارتعاشات شدیدتر را دارد[4]. از آنجا که آشکارسازهای سوسوزن از جمله NaI(Tl) وCsI(Tl) نسبت به آشکارسازهای حالت جامد مقاوم‏تر و ارزان‏تر بوده و برای پرتو گاما ی پر  انرژی  کارآمد هستند و همچنین می‏توان آنها را بدون خنک سازی در دمای اتاق مورد استفاده قرار داد، بنابراین می‏توانند در زمینه کاربردهای مختلف تحت شرایط آب و هوای نامطلوب استفاده شوند[5]. لذا این سوسوزن‏ها در بسیاری از کاربردهایی که قدرت تفکیک انرژی و مشخصات زمانی خوب مد نظر نیست، به وفور مورد استفاده قرار می‏گیرند[6].


فرم در حال بارگذاری ...

« تحلیل ساختاری و فضایی عنصر چوب در معماری بومی استان گیلانتبیین و تحلیل نحوه توزیع و پراکنش پارکهای محله ای از نظر نوع، اندازه و عملکرد در تقسیمات … »
 
مداحی های محرم