مواد و روش ها: با توجه به نقش مهم گاستروکین 1 در اپیتلیوم معده و کاهش بیان ژن GKN1 در سرطان معده و نقش تنظیمی پروموتر در بیان ژن ها، در این مطالعه 52 بیمار مبتلا به سرطان معده و 52 فرد سالم انتخاب شده و پلی مورفیسمهای تک نوکلئوتیدی قرار گرفته در ناحیه پروموتری ژن GKN1 با استفاده از توالی یابی و تکنیک Tetra-primer ARMS PCR بررسی گردید.
نتیجه گیری: نتایج نشان داد که پلیمورفیسم تک نوکلئوتیدی rs 4575760 با خطر ابتلا به سرطان معده ارتباط دارد (032/0=P , 1=df ,9/0-1/0 =%95CI ,42/0=OR). اما پلی مورفیسم تک نوکلئوتیدی rs 4072127 با خطر ابتلا به سرطان معده ارتباط ندارد ( 13/0 =P , 1 =df , 52/4 – 8/0=%95CI , 919/1 =OR).
فصل اول: کلیات
1-1- اپیدمیولوژی سرطان معده
سرطان معده چهارمین سرطان شایع در جهان است (1 و 2) و به عنوان اولین علت مرگ و میر به دلیل سرطان در مردان و دومین علت مرگ و میر در زنان شناخته شده است. با توجه به برآوردهای جهانی٬ سالیانه بیش از 930000 نفر به این بیماری مبتلا میشوند و حداقل 700000 نفر جان خود را از دست میدهند (3).
شیوع این سرطان در کشورهای مختلف تنوع گستردهای دارد به طوری که کشورهای ژاپن٬ کره٬ چین٬ شیلی٬ کاستاریکا و برزیل با میزان شیوع بیش از 20 نفر به ازای هر 100 هزار نفر نواحی پرخطر٬ بیشترین شیوع سرطان معده را دارند (3). نواحی با خطر متوسط کشورهایی هستند که بین 20-10 نفر مبتلا در هر 100 هزار نفر دارند که شامل کشورهای ایتالیا٬ انگلستان٬ آلمان٬ هلند و ترکیه میشود (3) و در نهایت، نواحی با خطر کم کشورهایی هستند که کمتر از 10 نفر مبتلا در هر 100 هزار نفر را دارند و آمریکا٬ کانادا٬ سوئد٬ دانمارک٬ مصر٬ هند و استرالیا را شامل میشود (3).
بر اساس مطالعات انجام گرفته، بروز سرطان در ایران 1/49 نفر در مردان و 9/25 نفر در زنان در هر 100 هزار نفر گزارش شده است;بنابراین ایران جزء کشورهای پرخطر محسوب میشود (3). اگرچه شیوع جهانی سرطان معده در سالهای اخیر به طور چشمگیری کاهش یافته است٬ اما شایع ترین سرطان در ایران به ویژه در شمال و شمال غرب ایران شناخته شده است (3 و 4).
میزان بروز این سرطان حتی در نواحی مختلف ایران نیز متفاوت است٬ در اردبیل بالاترین میزان شیوع سرطان معده را دارد و بعد از آن شهرهای سمنان، گلستان، شرق آذربایجان و تهران به ترتیب دارای بالاترین آمار ابتلا به سرطان معده در مردان و زنان در ایران هستند، در حالی که کمترین شیوع در کرمان (2/10 برای مردان و 1/5 برای زنان) گزارش شده است (3 و 4).
2-1- معده
دستگاه گوارش وظیفه هضم، جذب غذا و مواد مورد نیاز بدن و تبدیل آن به انرژی را بر عهده دارد. معده قسمتی از لوله گوارش است که بین روده کوچک و مری قرار دارد و وظیفه اصلی آن هضم غذا است. غذا پس از ورود به معده چند ساعت توقف کرده و در این مدت دچار هضم شیمیایی و فیزیکی میشود (5). معده از نظر آناتومی به چهار قسمت تقسیم میشود: کاردیا، فوندوس یا طاق معده، تنه (بدنه) و
پیلور (شکل 1-1). هر یک از این بخش ها، سلول ها و عملکردهای مختلف دارند (6). ابتدا و انتهای معده با دو دریچه محدود شده است، دریچهای که مری را به معده وصل میکند، کاردیا، و دریچه ای که معده را به روده کوچک متصل میکند، پیلور نامیده میشود (5).
1-2-1- کاردیا
کاردیا یک نوار حلقوی باریک به عرض 3-5/1 سانتی متر و در محل اتصال مری به معده است. مخاط این ناحیه دارای غدد لوله ای ساده و شاخه دار است. قسمت انتهای این غدد اغلب چین خورده است و مجرای بزرگی دارد. اکثر سلول ها در این ناحیه لیزوزوم و موکوس ترشح میکنند و تعداد کمی نیز تولید کننده اسید میباشند (7).
2-2-1- طاق و تنه
فوندس (طاق) و تنه معده پر از غدد لوله ای معدی است که 7-3 غده لوله ای شاخه دار به داخل آن ها باز میشوند. پراکندگی سلولهای اپیتلیال در غدد معدی یکنواخت نیست. گردن این غدد از سلولهای بنیادی ، سلولهای موکوسی و جداری تشکیل شده است (7).
3-2-1- پیلور
پیلور دارای حفرههای معدی عمیقی است که غدد لوله ای شاخه دار به داخل آن ها باز میشوند. در مقایسه با غدد موجود در ناحیه کاردیا، غدد پیلوری دارای حفرههای عمیق تر و بخشهای ترشحی پیچیده کوتاه تری میباشد. این غدد، موکوس و همچنین مقادیر قابل توجهی از آنزیمهای لیزوزومی ترشح می کنند. سلولهای G که گاسترین، ترشح میکنند در بین سلولهای موکوسی غدد پیلوری قرار میگیرند. گاسترین، ترشح اسید توسط سلولهای جداری را تحریک میکند و رشد سلولهای زیر مخاط معده را تحریک میکند (7).
3-1- سلولهای موجود در غدد معده
سلولهای موجود در غدد معده از انواع مختلف سلول ها از جمله: سلولهای گردن مخاط، سلولهای جداری، سلولهای اصلی و سلولهای غدد درون ریز تشکیل شده است (6).
1-3-1- سلولهای گردن مخاط
سلولهایی هستند با شکل نامنظم که در حد فاصل سلولهای جداری یا مرز نشین فشرده شدهاند و با رنگآمیزی به سختی از سلولهای اصلی قابل تشخیص هستند. موکوس مترشحه از این سلولها اسیدی است و از موکوس مترشحه از سلولهای سطحی که خنثی میباشد، متفاوت است (6).
2-3-1- سلولهای تمایز نیافته
این سلولها به عنوان سلولهای بنیادی، با تکثیر و تمایز، همه سلولهای پوششی معده شامل سلولهای موکوسی، جداری، انترو اندوکرین و اصلی را جایگزین میکند. فعالیت این سلولها در هنگام آسیبهای اپیتلیال افزایش یافته و به التیام سریع زخم کمک میکند. در شرایط عادی سلولهای پوششی معده هر 4 – 3 روز تجدید میگردند (6).
3-3-1- سلول های اصلی
این سلول ها در تنه و قاعده غدد یافت میشوند. این سلولها دارای سیتوپلاسم و شبکه آندوپلاسمی زبر هستند که مشخصه سلولهای پروتئین ساز است. این سلولها، آنزیمهای پپسین برای تجزیه پروتئینها، لیپاز برای تجزیه چربیها و رنین برای انعقاد شیر را سنتز و ترشح میکنند (5).
4-3-1- سلولهای کناری یا جداری
سلولهای کناری، سلولهای اسیدوفیل هستند که در تمام قسمتهای غدد معدی یافت میشوند. این سلولها حاوی تعداد زیادی میتوکندری هستند. سطح سلولها دارای فرورفتگی عمیق و حاوی میکرویلیهای بلند هستند. سلولهای کناری مسئول ترشح اسید معده هستند. ترشح اسید معده توسط اعصاب کولینرژیک، هورمون گاسترین و هیستامین تحریک میگردد. این سلولها فاکتور داخلی معده را ترشح میکنند که باعث جذب ویتامین B12 میشود. در صورت عدم ترشح این فاکتور، جذب ویتامین B12 مختل شده و سنتز هموگلوبین صورت نمیگیرد و یک نوع کم خونی به وجود میآید (6).
5-3-1- سلولهای غدد درون ریز
ترشحات این سلولها از سطح قاعدهای به رگهای خونی منتقل میشود. این سلولها در فوندوس معده باعث ترشح سروتونین (برای تحریک عضلات جدار معده و روده) و در پیلور باعث ترشح گاسترین شده و باعث تحریک سلولهای کناری میشوند (5).
1-1- تاریخچه مطالعات سیستماتیکی سرده Viola
سرده .Viola L. با دارا بودن 600-525 گونه همـی کریپتوفیت[1]، کامـوفیت[2] و فانـروفیت[3] بزرگتـرین سـرده خانـواده Violaceae اسـت Clausen, 1964; Ballard, 1996)). ایـن سـرده در سـال 1753 توسـط لینــه[4] معـرفی شد و نمـونه تیپ این سـرده، V. odorata است که در سال 1982 نمونه لکتوتیپ آن توسط Haesler جمع آوری و گزارش شد (Marcussen, 1998).
این سرده در سال 1823 توسط گیاهشناس سوئیسی De Candolle به بخشه ها و زیر بخشه های مختلف طبقه بندی شد (Chatterjee & Sharma, 1987). در سده گذشته، مونوگرافر آلمانی، Becker، اولین تاکسونومیستی بود که این سرده را در سطح جهان بررسی کرد و تعداد بسیار زیادی گونه جدیـد و تقسیم بندیهای تاکسونومیکـی جدیدی معرفی کرد (Becker, 1916, 1917a, 1917b, 1918, 1922, 1923a, 1923b, 1923c, 1923d, 1924, 1925a). مطالعات وی در ایـن زمینـه (1925b)، اولیـن ارزیابـی جامـع سرده Viola را شامـل شناسـایی 14 بخشه و تقـریباً دو برابر گروه های زیر بخشـه ای در جهـان، بوجـود آورد، بزرگتـرین بخشـه آن Nomimium بود که بعدها به نام بخشـه Viola تغییـر پیـدا کرد. سپس Clausen (1927, 1929, 1964) بازبینی های تاکسونومیکی عمده ای بر طبقه بندی Becker انجام داد که اغلب آنها توسط متخصصان بعدی پذیرفته شد، در حالیکه قسمتی هنوز مبهم باقی مانده است. متخصصان دیگر تغییرات دیگری اعمال کردند که عمدتاً شامل نامگذاری های اولیه بود (Bamford & Gershoy, 1930; Gershoy, 1934; Yuzepchuk & Klokov, 1974). Clausen گروه های بدون ساقه اصلی با عدد کروموزومی پایه x=12 یا مشتقات آنیوپلوئیدی را در بخشه Plagiostigma قرار داد و گروه های با عدد پایه کروموزومی x=10 را در بخشه Nomimium (بخشه نامعتبر Rostellatae در طبقه بندی خودش) قرار داد که اکنون به میزان زیادی کاهش پیدا کرده است. وی همچنین گروه هایی که به طور برجسته دارای ساقه اصلی و گلهای زرد بودند را از سری ها و زیربخشه ها به بخشه Chamaemelanium ارتقاء داد و بخشه Nuttallianae را به تعدادی زیر بخشه تقسیم کرد. اگرچه برخی متخصصان بخشه Dischidium در طبقه بندی Becker را حفظ کردند و زیر بخشه Orbiculares را در بخشه Nomimium ابقا کردند، Clausen بخشه Dischidium و Orbiculares را ادغام کرد و آنها را در بخشه Chamaemelanium، زیر بخشه Beflorae که به صورت نامعتبر چاپ شده بود، قرار داد. Clausen و دیگر متخصصان عقاید متفاوتی درباره محدوده و مرتبه گروه های Adnatae، Diffusae، Langsdorffianae، Stolonosae و Vaginate ابراز کرده اند (Ballard et al., 1999).
تصویری از خلاصه طبقه بندی Becker و تغییرات عمده اعمال شده توسط محققین بعدی در شکـل 1-1-1 نشان داده شده است.
2-1- موقعیت سیستماتیکی تیره Violaceae
تیره Violaceae Batsch. با 23 جنس و نزدیک به 900-825 گونه عموماً در نواحی گرمسیری و نیمه گرمسیری جهان پراکنش دارد (Munzinger & Ballard, 2003; Melchior, 1925; Valentine, 1962; Watson & Dallwitz, 1992-97; Kruse, 1994). این تیره به مدت طولانی به عنوان تیره اصلی[1] راسته Violales شناخته می شد (Cronquist, 1981; Takhtajan, 1997)، ولی بر اساس مطالعات ملکولی در راسته Malpighiales قرار گرفته است (APG II, 2003; APGIII, 2009). دراین راستـه، تیـره Violaceae و 4 تیـره دیگـر (Achariaceae, Lacistemataceae, Passifloraceae & Salicaceae) یک کلاد را تشکیل می دهند (Davis et al., 2005; Tokuoka & Tobe, 2006) و Violaceae به عنوان گروه خواهری با Passifloraceae در نظر گرفته می شود (Soltis et al., 2007; Tokuoka & Tobe, 2006).
طبقه بندی تیره Violaceae توسط چندین گیاه شناس بررسی شده است (Melchior, 1925; Hekking, 1988; Munzinger & Ballard, 2003). با توجه به اغلب سیستم های طبقه بندی اخیر، این تیره به 3 زیر تیره تقسیم می شود: Leonioideae و Fusispermoideae از آمریکای جنوبی، که هر دو مونوژنریک و به طور مشخص ابتدایی هستند (Hodges et al., 1995; Hekking, 1988) و Violoideae که اشتقاق بیشتری دارد و بقیه سرده را شامل می شود. این طبقه بندی بر اساس پیچش گل در غنچه[2]، میوه، نوع بذر و میزان اتصال سطح پشتی بساک ها بوده است (Hekking, 1988; Munzinger & Ballard, 2003). زیر تیره Violoideae بر اساس دو صفت جام گل منظم یا نامنظم و حضور یا عدم حضور شهدگاه[3] به 2 طایفه Violeae و Rinoreae تقسیم می شود (Hekking, 1988; Munzinger & Ballard, 2003)، که سرده Viola متعلق به طایفه Violeae می باشد.
3-1- موقعیت سیستماتیکی سرده Viola
سرده Viola بر اساس سیستم APG III طبق سلسله مراتب طبقه بندی زیر قرار می گیرد (APG III, 2009)
گونه های Viola در ایران بر اساس فلور ایران، در دو بخشه قرار می گیرند: بخشه Viola با 14 گونه و بخشه Melanium با 5 گونه (خاتم ساز، 1991). این تقسیم بندی در فلورا ایرانیکا به این صورت است:
بخشه Viola با 9 گونه، بخشه Melanium با 4 گونه و بخشه Sclerosium با 2 گونه.
4-1- شرح ریخت شناسی تیره Violaceae
گیـاهانی علفی، درختچـه ای یا درختـی؛ کرک ها اغلب ساده؛ برگ ها متنـاوب یا متقابل، گاهی تشکـیل رزت انتهایی می دهند؛ ساده یا گاهی لوبدار، با حاشیه کامل یا اره ای و رگبندی شانه ای یا پنجه ای؛ دارای گوشوارک. گل آذین اغلب کاهش یافته به صورت یک گل منفرد، معمولاً محوری؛ گل ها اغلب دوجنسی؛ کاسبرگ ها 5 عدد، جدا از هم، گلبرگ ها 5 عدد، جدا از هم، با آرایش متراکب [1]یا حلقوی[2]، گلبرگ پایینی گاهی مهمیز دار. پرچم ها معمولاً 5 عدد، کنار یکدیگر به صورت یک حلقه به دور مادگی قرار گرفته اند، میله بسیار کوتاه، جدا از هم تا کمی پیوسته، دو بساک پشتی یا همه بساک ها با شهدگاه مهمیزی یا غده ای شکل، اغلب به یک زایده رأسی سه گوش یا غشایی متصل شده؛ دانه های گرده اغلب Tricolporate؛ برچه ها معمولاً 3 عدد، متصل؛ تخمدان فوقانی، با تمکن جانبی؛ خامه معمولاً خمیده یا نوک دار، کلاله معمولاً پهن شده، گاهی لوبدار. تخمک ها یک عدد یا بیشتر در هر تمکن؛ میوه معمولاً کپسول چند خانه ای؛ بذر ها معمولاً دارای زایده آریل.
5-1- شرح ریخت شناسی سردهViola
ریخت شناسی گل
سرده Viola بر اساس ریخت شناسی گل به دو دسته تقسیم می شود (Tutin et al., 1968): بخشه Melanium که Pansies نامیده می شوند و سایر بخشه ها که با نام عمومی Violets شناخته می شوند. وجه تمایز دو گروه نحوه قرارگیری گلبرگ های کناری است که در Violets به سمت پایین و در Pansies به سمت بالا است. ویژگی های متمایز کننده دیگر عبارتند از: (i) پراکنش بیوجغرافیایی: Pansies تنها در اروپا و غرب آسیا پراکنش دارد، درحالیکه Violets همه جا زی[1] هستند (Clausen, 1929). (ii) وجود چند شکلی[2] دانه گرده: بررسی 28 گونه اروپایی Viola نشان می دهد که 81% گونه های Pansies این چند شکلی را نشان می دهند در صورتی که این رقم برای Violets 42% است (Dajoz, 1999)؛ (iii) دیگر ویژگی های ریخت شناسی گل مانند طول جام گل و طول مهمیز؛ همچنین اکولوژی گرده افشانی در بین دو گروه به میزان زیادی متفاوت است (Beattie, 1971, 1974; Herrera, 1993; Ballard, 1996). Pansies تنها گل های برون زاد آور (Chasmogamous) تولید می کننـد (Knuth, 1908; Herrera, 1993)، در حالیکه Violets هر دو نوع گل های باز و جاذب حشرات (Chasmogamous) و گل های شدیداً کاهش یافته، بسته و خود گرده افشان (Cleistogamous) تولید می کنند (Beattie, 1969; Grime et al., 1986).
فرم رویشی: در سرده Viola، فرم رویشی به میزان قابل توجهی در بین گونه ها متفاوت است. ساختار پایه غالب در این سرده، ریزوم با برگ های رزت انتهایی (در چند ردیف)، چند ساله و ساقه گل دهنده جانبی (با برگ هایی در دو ردیف)، یک ساله است. این ساختار پایه برای مثال در V. riviniana و V. rupestris، به شکل های مختلف تغییر می یابد. در برخی گونه ها، برگ های رزت وجود نداشته و تنها ساقه گل دهنده خارج شده از ریزوم دیده می شود (V. elatior, V. canina). در برخی دیگر، ساقه هوایی به صورت ساقه رونده[3] تغییر یافته (V. palustris, V. odorata) و یا اصلاًً وجود ندارد (V. hirta, V. somchetica). در بخشه Melanium سیستم ساقه ای اصلی به میزان زیادی تغییر یافته و به آسانی قابل شناسایی نیست. گونه های درختی و درختچه ای در هاوایی دیده می شود (V. tracheliifolia, V. waialenalenae). به گونه هایی که گل های آن در ساقه های هوایی قرار دارد، ساقه دار[4] و به آن دسته که گل ها از محل خروج برگ های رزت ایجاد می شوند، بدون ساقه[5] می گویند.
برگ: برگ ها ساده، رزت و یا ساقه ای با آرایش متناوب؛ معمولاً قلبی شکل، کلیوی شکل تا سه گوش، گاهی کشیده یا تخم مرغی و یا قاشقی؛ حاشیه کامل، دندانه دار یا اره ای؛ دمبرگ دار.
کرک: در صورت وجود ساده، با اندازه متغیر در بین گونه ها، به صورت پراکنده تا متراکم یا پشم آلود.
گوشوارک: ساده یا لوبدار تا منقسم و برگی شکل؛ حاشیه ساده، دندانه دار یا شرابه ای تا مژه دار.
گل آذین: به صورت گل منفرد دیده می شود که به صورت محوری روی ساقه گل دهنده قرار می گیرد و یا از رزت و یا ساقه رونده تشکیل می شود.
گل ها: دو جنسی؛ ریزان؛ نامنظم؛ دارای مهمیز؛ بنفش تا آبی، گاهی سفید یا زرد یا ترکیبی از اینها.
اجزاء گل:
گلبرگ: نامنظم؛ 5 عدد؛ جدا از هم؛ واژ تخم مرغی یا گرد؛ هم اندازه، بزرگتر یا کوچکتر از کاسبرگها؛ دو گلبرک کناری به سمت بالا (بخشه Melanium) و یا پایین (سایر بخشه ها)؛ گلبرگ پایینی مهمیز دار، گاهی رنگی یا مخطط (جاذب گرده افشان ها).
کاسبرگ: پایا؛ نامنظم؛ 5 عدد، جدا از هم؛ تخم مرغی، نیزه ای یا سه گوش؛ حاشیه ساده یا مژه دار.
پرچـم: 5 عدد، جدا از هم، فاقـد میـله، در رأس به زایـده غشایـی سه گوش متصـل است و به صورت حلقـه ای دور مادگـی را فرا مـی گیرد. دو بساک به همدیگر چسبیده است و هر کدام با یک شکاف باز می شود. دو پرچم پایینی زایده دار است که به درون مهمیز کشیده می شود.
مادگی: تخمدان زبرین؛ گاهی اوقات در داخل تخمدان کرکدار؛ خامه نوکدار؛ کلاله در برخی گونه ها پهن شده (زیر بخشه Viola)، غده ای یا مودار.
برگه: در اغلب گونه ها روی دمگل قرار دارد؛ متقابل یا تقریباً متقابل؛ حاشیه ساده، مژه دار یا کرکدار.
میوه: کپسول سه خانه ای، اغلب همراه با خامه پایا؛ گرد، مستطیلی یا سه گوش؛ شکوفا با 3 شکاف (بخشه Melanium و زیر بخشه Rostratae) و یا نا شکوفا (زیر بخشه Viola)؛ به رنگ سبز، بنفش یا سبز با لکه های بنفش؛ کرکدار (زیربخشـه Viola) یا فاقـد کرک (سایر گونه ها)؛ خوابیـده روی زمین (زیربخشه Viola) یا افراشتـه (سایر گونه ها) در حالت رسیده.
بذر: به تعداد زیاد؛ همراه با زایده آریل؛ کرم تا قهوه ای.
[1] Cosmopolitan
[2] Heteromorphism
[3] Stolon
[4] Caulescent
[5] Acaulescent
[1] Imbricate
[2] Convolute
[1] Core
[2] Aestivation
[3] Nectaries
[1] Hemicryptophyte
[2] Chamaephyte
[3] Phanerophyte
[4] Linneus
در این مطالعه به بررسی افزودن برخی عوامل مؤثر در روند اتجماد تخمک مانند آلدوسترون در محیط های اختصاصی کشت جنین و تأثیر آنها بر بیان پروتیین مورد نظر (Na/K ATpase)در مراحل مختلف جنینی
می پردازیم. بدیهی است نتایج حاصل از این مطالعه ضمن مشخص نمودن میزان تاثیر عامل افزوده شده بر روند تکامل تخمك و جنین های حاصله از انجماد، امكان ارتقای كیفی روش های انجمادی تخمك مبتنی بر نتایج بدست آمده را نه تنها در این گونه جانوری بلكه در سایر پستانداران از جمله انسان فراهم نموده و بدین ترتیب گامی موثر در جهت رفع معضل تکامل تخمک های انجمادی از مورولا به بلاستوسیست در پستانداران برداشته خواهد شد. لازم به ذکر است تا به حال تأثیر آلدوسترون در روند تکاملی جنین های حاصل از تخمک های منجمد- ذوب شده گوسفند بررسی نگردیده است و در صورت وجود تأثیر مثبت در این زمینه، موجب تحول روش های انجماد تخمک در گوسفند و حتی سایر گونه ها خواهد شد.
2-1- اهداف پژوهش
1- بررسی تأثیر هورمون آلدوسترون افزوده شده در طی IVM و مراحل مختلف جنینی بر عملکرد پمپ های Na+/K+/ATPase موجود در غشای بازولترال تروفکتودرم جنینی و برطرف شدن توقف جنین های حاصل از تخمک های منجمد- ذوب شده، در مرحله مورولا .
2- ارتقای پروتکل های انجماد تخمک در گوسفند با هدف ارتقای کیفی(جنینهای حاصله از افزایش میزان تفریخ، ICM/Total) عملکرد اجزای داخل سلولی و یا کاهش آسیب های ساختاری تخمک در روند تکامل جنین های حاصل از تخمک های منجمد- ذوب شده.
3-1- ضرورت انجام تحقیق
این پروژه با هدف پاسخ به برخی از سؤال های زیر طراحی گردید: بررسی تأثیر هورمون آلدوسترون افزوده شده در مراحل مختلف جنینی بر عملکرد پمپ های Na+/K+/ATPase موجود در غشای بازولترال تروفکتودرم جنینی و برطرف شدن توقف جنین های حاصل از تخمک های منجمد- ذوب شده، در مرحله مورولا؛ بررسی ارتباط بین تجویز هورمون های فعال کننده تحت واحد های 1α و 1β پمپ Na+/K+/ATPase و میزان افزایش عملکرد آنزیم مذکور در مرحله انتقال از مورولا به بلاستوسیست و متعاقباً بهبود روند تکاملی جنین های حاصل از تخمک های منجمد- ذوب شده و ارتقای پروتکل های انجماد تخمک در گوسفند با هدف ارتقای عملکرد اجزای داخل سلولی و یا کاهش آسیب های ساختاری تخمک در روند تکامل جنین های حاصل از تخمک های منجمد- ذوب شده.
4-1- تولید جنین در شرایط In vivo
1-4-1- روند ایجاد سلول جنسی ماده
واحدهای عملكردی تخمدان فولیكول نام دارند كه تحت سازماندهی سلولی خاص تخمک را در خود جای دادهاند. این سازماندهی سلولی ثابت نبوده و در طی مراحل مختلف زندگی فولیكول تغییرات پیچیدهای مییابد. حاصل این تغییرات به آزاد شدن تخمک و یا تحصیل فولیكول رسیده منجر خواهد شد ]132،54[.
تولید مثل با تكامل تخمكها در تخمدان آغاز میگردد. تعداد 1 تا 25 تخمك، بسته به گونه حیوان، در مرحلهای از سیكل جنسی حیوان ماده به نام فاز اوولاسیون از فولیكول تخمدانی به داخل حفره شكمی آزاد میشوند. سپس این تخمكها از طریق لوله رحمی مربوطه وارد رحم
میشوند. فولیكولهای تخمدانی متعددی در مراحل مختلف تكاملی در استرومای كورتكس واقع شدهاند. بیشترین فولیكولها، فولیكولهای پریموردیال هستند. هر فولیكول پریموردیال حاوی یك تخمک اولیه است كه توسط یك لایه از سلولهای فولیكولی سنگفرشی احاطه شده است. در ادامه رشد این فولیكولها، سلولهای فولیكولی تبدیل به سلولهای مكعبی یا استوانهای كوتاه میشوند ]148،81 [.
مجموع وقایعی كه منجر به تولید سلول زایایی تخمک در جنس ماده میشود، باعث بروز تمامی واكنشهای لازم قبل، حین و بعد از واكنش با اسپرم در تخمک می شود که شامل یك پروسة طولانی از تمایز اووگونی در تخمدان جنینی تا بلوغ نهایی تخمک، درست قبل از اوولاسیون آن میباشد.
از مدتها قبل مشخص شده كه فقط تعداد كمی از تخمکهای اولیه حیوانات و نیز انسان میتوانند رشد ثانویه خود را دنبال کرده، تبدیل به تخمک ثانویه شده و تخمكگذاری كنند. بطور مثال در مورد گاو تخمین زده اند که در تخمدانهای گوساله تازه متولد شده حدود 200.000 تخمک وجود دارد که احتمالاً كمتر از 300 عدد آنها به مرحله تخمكگذاری میرسند] 52،136،20[.
در فرآیند بلوغ، اووسیت اولیه، پروفاز نخستین تقسیم میوزی پس از تولد را تکمیل میکند. در زمان بلوغ، تغییرات بعدی رخ میدهند. اووسیت اولیه حاوی تعدادی کرموزومهای دیپلوئید (xx) است. به طوری که در مرحلهی بلوغ، اووسیت بزرگ شده، سلولهای فولیکولی، مکعبی و به چندین لایه تکثیر مییابند. همچنین یک غشای مخطط به نام زوناپلوسیدا، پیرامون اووسیت تشکیل میشود (این لایه با به هم پیوستن زواید اووسیت اولیه و گلیکوپروتئین موجود در محل تشکیل شده است)، فولیکول بزرگ شده و فضاهای پر از مایع، بین سلولهای فولیکولی، پدیدار شده و به هم میپیوندند تا آنتروم فولیکول را تشکیل دهند. به همین دلیل، سلولهای فولیکولی، تفکیک میشوند تا لایهی گرانولوزوم و کومولوس اووفوروس، را تشکیل دهند. تک خارجی (لایهی فیبروزی) و تک داخلی (لایهی عروقی و سلولی) به وسیلهی سلولهای استرومایی تخمدان در خارج از لایهی گرانولوزوم، به وجود آمده و به این ترتیب، فولیکول گراف بالغ به وجود میآید. اووسیت اولیه، نخستین تقسیم میوزی را که در خلال حیات پیش از تولد آغاز شده بود، کامل میکند. در نتیجه دو سلول دختر هر یک با تعداد کروموزومهای هاپلوئید (n) تشکیل میشوند. در این فرآیند تقسیم هستهای برابر بوده اما تقسیم سیتوپلاسمی نابرابر است. بنابراین یک سلول دختر که سیتوپلاسم فراوانی از سلول مادر دریافت کرده، بزرگ میشود. این سلول اووسیت ثانویه نامیده میشود. سلول کوچک، نخستین گویچهی قطبی است که در فضای پیرامون زردهای جای داده میشود. در شکل 1-1 روند کلی انجام اووژنز آمده است.
تخمک گذاری، هنگامی رخ میدهد که یک فولیکول گراف بالغ در سطح تخمدان، پاره شود. تخمکگذاری میتواند در هر نقطه از سطح، به جز ناف تخمدان صورت گیرد. در این فرآیند، اووسیت ثانویهی احاطه شده به وسیلهی زوناپلوسیدا و سلولهای کومولوس اوفوروس از تخمدان بیرون رانده میشوند.
[1]- Ovulatian
[2]- Ovulation phase
[3]- Primordial follicle
2- Zona pellucida
[5]- Antrum folliculi
[6]- Stratum granulosum
4- Cumulus oophorus
5- Theca externa
6- Theca interna
[10]- First polar body
[11]- Perivitelline space
[12]- Ovulation
[1] – Nuclear transfer
[2] – Mitotic promoting factor
ضرورت یافتن جایگزینی مناسب برای رهاسازی فسفات تجمع یافته در خاک زمانی بیشتر احساس می شود که بر این امر واقف گردیم که منابع فسفات موجود در خاک قابلیت تامین فسفات مورد نیاز گیاهان برای تولید بهینه تا صد سال را دارا می باشد. بنابراین کافی است که این منبع عظیم فسفر را به صورت قابل جذب و استفاده برای گیاه تبدیل نمود (Bashan 1998, 16). به همین علت امروزه استفاده از کودهای بیولوژیک مورد توجه قرار گرفته است که مکانیسم عمل آنها قابلیت جذب عناصر غذایی گیاه در خاک را افزایش میدهد. باکتریهای حل کننده فسفات برای افزایش فراهمی فسفر مورد نیاز گیاه کارآمد به نظر می رسند (Bashan 1998, 16). فسفر در خاکها به دو شکل آلی و معدنی وجود دارد اما غلظت فسفات محلول در خاک معمولاً خیلی پایین است (Bashan 1998, 16). قسمت اعظم میکرو ارگانیسمهای محلول کننده فسفات در ریزوسفر گیاهان متمرکز شدهاند. میکروبهای خاک توانایی تبدیل اشکال نامحلول فسفر به اشکال محلول را دارند. ترکیبات آلی و معدنی خارج شده از ریشه، باعث افزایش جمعیت میکروبی در اطراف ریشه میگردند . با توجه به اینکه میکروارگانیسمهای محلول کننده فسفات در خاک به طور طبیعی وجود دارند و موجب افزایش فسفر قابل دسترس و تحریک رشد گیاه میشوند، اما تعداد آنها در خاک به اندازه کافی نیست تا با سایر میکروارگانیسمهایی که در ریزوسفر قرار دارند رقابت کنند. بنابراین تلقیح گیاهان با میکروارگانیسمهای محلول کننده فسفات اثرات مفیدی دارد. باکتریهای حل کننده فسفات طی سه مکانیسم تولید اسیدهای آلی، کلات کردن و واکنش های تبادل لیگاند موجب انحلال ترکیبات نامحلول فسفات میشوند. طی فرآیند انحلال بخشی از فسفر محلول، توسط باکتری حل کننده فسفات استفاده میشود اما از آنجائیکه مقدار فسفر حل شده بیش از نیاز باکتریها است لذا این مقدار آزاد میتواند در اختیار گیاه قرار گیرد. اغلب خاکهای ایران دارای آهک و گچ بوده و این امر میتواند موجب تثبیت فسفر شود. در نتیجه فسفر جذب ذرات کلوئیدی خاک شده و از دسترس گیاه خارج می شود. بنابراین در غالب خاکها از نظر مقدار فسفر کل مشکل وجود ندارد، بلکه مشکل، در دسترس قرار گرفتن آن میباشد. فسفر جذب عناصری مانند Ca2+، Fe3+ و Al3+ شده و باعث تشکیل ترکیبات نامحلول میگردد (Bhattacharyya and Jha 2012, 28).
[1]PGPR یا باکتری های تحریک کننده رشد گیاه، گروهی از باکتریهای ریزوسفر هستند که به طور مستقیم (انحلال فسفات، تولید هورمونها…) و غیر مستقیم (تولید کاتالاز، سیانید هیدروژن و….) موجب افزایش رشد گیاه می شوند. با توجه به طیف گسترده اثرات مثبت برخی از باکتریهای سودمند از قبیل تولید سیدروفور، تولید هورمونها و ویژگی بیوکنترلی آنها بر ضد قارچها و عوامل بیماریزا، متمرکز شدن بر تحقیقاتی که منجر به حصول چنین میکروارگانیسم های چند منظوره ای باشد بسیار مثمر ثمر خواهد بود، زیرا کودهای زیستی تلقیحات میکروبی هستند که علاوه بر افزایش جذب عناصر غذایی، موجب افزایش رشد گیاه میشوند، بنابراین با کاربرد سویه های PGPR میتوان چندین هدف را به طور همزمان دنبال کرد ((Boraste 2009, 1; Saharan and Nehra 2011, 21.
استفاده از ماده حامل مناسب در تولید یک کود زیستی با کیفیت بسیار مهم و ضروری است. ذغالسنگ نارس[2]، ذغالسنگ قهوهای[3]، چارکل[4]، گل یا لجن فشرده، کودهای مزرعهای و مخلوط خاکها میتوانند به عنوان یک حامل مناسب استفاده شوند. ذغال سنگ طبیعی و ذغال سنگ قهوه ای حاملهای بهتری برای کودهای زیستی هستند. الحاق میکروارگانیسم به ماده حامل باید به گونه ای باشد که قابل حمل و لمس راحت و تجزیه طولانی باشد و کمترین اثر را روی کود زیستی بگذارد. بر طبق تحقیقات هوبن[5] و سوماسه گاران[6] یک ماده حامل خوب برای تلقیح بذر، باید ارزان و به راحتی در دسترس باشد، علاوه بر این نباید برای سویه های باکتریایی و گیاه سمی باشد زیرا حامل می تواند روی بذر اثر بگذارد. همچنین حامل باید ظرفیت جذب رطوبت خوبی داشته باشد و به خوبی به بذر متصل شود و در نهایت حامل باید ظرفیت بافری و pH مناسبی داشته باشد و به راحتی بتوان آن را با اشعه گاما یا اتوکلاو استریلیزه کرد (Boraste 2009, 1).
باتوجه به اینکه در خاک های آهکی ایران که در اقلیم های خشک و نیمه خشک تحول پیدا کرده اند، وجود pH بالا، درصد زیاد کربنات کلسیم، کمی مواد آلی و خشکی خاک باعث شده اند که جذب فسفر کمتر از مقدار لازم برای تامین رشد بهینه اکثر محصولات کشاورزی باشد. لذا هدف از این پژوهش بررسی تاثیر spp. Streptomyces جدا شده از خاک بر انحلال فسفات به منظور تولید کود زیستی فسفاته می باشد.
2-1- روابط میكروارگانیسم با ریشه گیاهان
میكروارگانیسم های خاك ارتباط های گسترده و متنوعی با ریشه گیاهان عالی دارند كه مهمترین آنها عبارتند از:
1- همزیستی: به شكل ارتباط های میكوریزی و تشکیل گرهک در گیاهان خانواده لگومینوز میباشد.
2- انگلی: دراین حالت ارگانیسمهای انگل به صورت غیراختصاصی تا بسیار اختصاصی عمل می كنند.
3- روابط تقریباً نامشخص كه در ریزوسفر و سطح ریشه گیاه وجود دارد.
خاك غنی از میكروارگانیسم هایی است كه از لحاظ شكل، ساختار و نقش متفاوت هستند. از طرف دیگر خاك محیطی است كه درآن بخش های زیرزمینی گیاه گسترش و استقرار می یابد. تراكم ریشه گیاهان عالی در خاك زیاد است. وقتی ریشه درخاك رشد می كند، شرایط خاك مجاور ریشه به طرق مختلف به طور قابل ملاحظه ای تغییر می كند. وقتی محیط كوچك خاك مجاور ریشه ها تغییر می یابد، این تغییرات روی میكروارگانیسم های خاكزی موجود دراین منطقه اثر می گذارند. گیاهان به طور ذاتی فاقد سیستم دفعی مشخصی بوده و بسیاری از تركیبات به شكل مواد زائد از قسمت های مختلف اندام های گیاه آزاد می شوند. سطح ریشه یكی از این مناطقی است كه از آنجا تركیبات ناخواسته و به طور مستمر از گیاه تراوش می شوند و در مجاور سطح ریشه تجمع می یابند. موادی كه به این صورت از ریشه ها آزاد می شوند، ترشحات نامیده می شوند. تركیبات آلی و معدنی خارج شده از ریشه، باعث افزایش جمعیت میكروبی در منطقه اطراف ریشه ها می گردند. علاوه بر ترشحات، سلولهای جدا شده از ریشه كه عمدتاً از كلاهك جوان در حال رشد ریشه مشتق می شوند، انرژی اضافی را برای توسعه جمعیت میكروبی فراهم می كنند (Brahmaprakash and Sahu 2012, 92).
[1] Plant growth promoting rhizobacteria
[2] Peat soil
[3] Lignite
[4] Charcoal
[5] Hoben
[6] Somasegaran
تحقیقات نشان می دهد که بیماری اسکیزوفرنی ممکن است در اثر تغییر در سطح مواد شیمیایی مورد استفاده ی ارتباطات مغزی (از جمله انتقال دهنده های عصبی یا هورمونها) ایجاد شود [4].
مطالعات ژنتیکی نشان داده، اثرات متقابل چندین ژن توسط استرس ها در طول عمر و عوامل محیطی (از جمله عفونت های ویروسی رحم، اکسیژن محدود شده در هنگام تولد، وضعیت جغرافیایی و غیره) باعث افزایش ریسک ایجاد آن می شود، بنابراین اسکیزوفرنی وراثت پیچیده ای دارد [5]. در دهه اخیر تحقیقات انجام شده بر روی اکسی توسین (OT) تاثیر این هورمون را در اختلالات اسکیزوفرنی نشان می دهد[6]. ژن رسپتور اکسی توسین (OXTR) محدوده 17 کیلوبایت روی کروموزوم 3P25.3 انسانی را به خود اختصاص داده، و همچنین دارای 3 اینترون و 4 اگزون می باشد. اکسی توسین با واسطه OXTR در میومتر و آندومتر و همچنین بافت های محیطی و سیستم عصبی مرکزی فعال می شود. اکسی توسین در میومتر با فعال کردن فسفولیپاز C، باعث افزایش غلظت کلسیم داخل سلولی و در نتیجه انقباضات رحمی می شود[7،8]. گیرنده های اکسی توسین در مناطقی از سیستم عصبی از جمله آمیگدال، محور HPA و سیستم عصبی خودکار فراوانترند، که مسئول پردازش و تنظیم رفتارهای اجتماعی- عاطفی می باشند. گیرنده های اکسی توسین در بسیاری از مناطق مغز از جمله هسته های cAmyg و VMH یافت شده اند، که تفاوت در بیان گیرنده اکسی توسین بین این هسته ها با فعال شدن مسیرهای سیگنالینگ مجزا در مناطق مختلف مغز صورت می گیرد. با فعال شدن گیرنده اکسی توسین در هر کدام از این مسیرها نقش های متفاوتی ایجاد می گردد[9].
هدف ما در این تحقیق بررسی نقش دو جایگاه پلی مورفیسم ژن گیرنده اکسی توسین در خطر ابتلا به بیماری اسکیزوفرنی با استفاده از تکنیک PCR-RFLP می باشد. پس از انجام آزمایشات متعدد از جمله واکنش زنجیره ای پلی مراز (PCR) و چندشکلی طولی قطعات محدود شده (RFLP) با استفاده از آنزیم محدودگر مناسب تاثیر این SNP ها در نمونه های سالم و بیمار شهرستان یاسوج بررسی شده است.
فصل دوم: مروری بر منابع
1-2- تعریف اسکیزوفرنی
اختلال اسکیزوفرنی یکی از شایعترین بیماری های سایکوتیک روانی است که فرد دچار ناهنجاری های شخصیتی می شود، در افراد مبتلا به این بیماری ارتباط منطقی بین افکار و احساساتشان دیده نمی شود. بنابراین بیماران دارای رفتارهای غیر عادی هستند[10].
2-2- تاریخچه
(Schizophrenia) روان گسیختگی، اسکیزوفرنی یا شیزوفرنی،یک بیماری روانی با منشاء نامشخص و علائم متغیر می باشد که از ترکیب دو واژه یونانی(shizein و phrenos) ایجاد شده است[11]. این بیماری به وسیله یک روان پزشک سوئیسی به نام اوژن بلولر در سال 1911 ابداع شد. بلولر معتقد بود رفتار های روانی خاص که معمولا در افراد عادی به صورت هماهنگ بروز می کنند، در بیماران اسکیزوفرنیک به گونهای گسسته میشوند اما این بدان معنی نیست که بیماران اسکیزوفرنیک دو یا چند شخصیت متناوب دارند. در واقع وقتی افراد نرمال رویداد وحشتناکی را میبینند، بلافاصله واکنش هیجانی که متناسب با ادراکشان است را بروز می دهند ولی به نظر بلولر این حالت در بیماران اسکیزوفرنی روی نمیدهد؛ زیرا فکر و هیجان آنها از یکدیگر جدا شده است[12].
3-2- اپیدمیولوژی
مطالعات اخیر نشان داده، میزان طول عمر اسکیزوفرنی از 2.3 درصد به 3.5 درصد رو به افزایش است. داده ها نشان میدهد، بروز علائم اسکیزوفرنی در میان مردان شدیدتر از زنان است و همچنین شروع بیماری در مردان زودتر از زنان اتفاق می افتد[13]. در جهان هر سال 2 میلیون نفر به بیماری اسکیزوفرنی مبتلا می شوند[14]. (1 درصد تخمین زده شده است.) شیوع اختلالات روانی اسکیزوفرنی در ایران 0.6 درصد گزارش شده است[15]. این بیماری در بین مردان و زنان تقریبا به یک اندازه شایع است، و در جوامع شهری بیشتر مشاهده می شود. شیوع آن قبل از 15 سالگی بسیار نادر است، اما در هر سنی پس از آن رخ می دهد. بیشتر در سنین 15 تا 35 سالگی مشاهده شده است. این اختلال در مردان در اواخر دوران نوجوانی و اوایل 20 سالگی تشخیص داده می شود، در حالی که تشخیص آن در میان زنان از 20 تا اوایل 30 سالگی صورت می گیرد[16].