وبلاگ

توضیح وبلاگ من

برق (مخابرات)بررسی عملكرد و شبیه‏سازی سیستم‏های ناوبری CVOR و DVOR در كانال‏های چند مسیری

1-1- تعاریف و معرفی واژه‏ها

 

 

فاصله شعاعی[14] : به خطی که هواپیما را به ایستگاه وصل می‌کند، فاصله شعاعی گویند که در این متن با نام‌های فاصله یا مسافت[15] : نیز از آن نام برده می‌شود. شکل (1-1) فاصله شعاعی را نشان می‌دهد.
زاویه سمت : به زاویه‌ ایجاد شده بین بردار شمال مغناطیسی و خط واصل از بدنه هواپیما تا ایستگاه زمینی، در جهت حرکت عقربه‌های ساعت، زاویه سمت می‌گویند. شکل (1-1) این زاویه را نمایش می‌دهد.

 

 

 

 

 

 

 

 

3

 

رادیال[16] : به زاویه‌ ایجاد شده بین بردار شمال مغناطیسی و خط واصل از ایستگاه زمینی تا بدنه هواپیما در جهت حرکت عقربه‌های ساعت، رادیال گفته می‌شود. شکل (1-1) این مطلب را نمایش داده است.

 

 

شکل 1-1- زاویه bearing و فاصله شعاعی

 

 

1-2- ماموریت و عملکرد سامانه VOR

 

 

سامانه VOR اطلاعات زیر را برای خلبان و ناوبر مهیا می‌کند:
الف – تعیین سمت هواپیما نسبت به ایستگاه زمینی و نمایش اطلاعات سمت
ب – نمایش اطلاعات مربوط به انحراف از مسیر در واحد درجه
پ – شناسایی ایستگاه زمینی به هواپیما از طریق ارسال کد مورس (پیوست 3)
ت – ارتباط رادیویی بین ایستگاه و هواپیما
ث – تعیین جهت حرکت هواپیما نسبت به ایستگاه (نزدیک‌شونده یا دور‌شونده بودن) توسط نمادTO یا FROM
ح – فرود هواپیما
[1] Global positioning system
[2] Tactical Air Navigation
[3] VHF omnidirectional range
[4] Wide Area Augmentation System

پروژه دانشگاهی

 

[5] Local Area Augmentation System
[6] Inertial Navigation System
[7] visual aural range
[8] Non Directional Beacon
[9] international civil aircraft organization (ICAO)
[10] multipath
[11] Bearing
[12] Conventional VHF Omni directional Range
[13] Doppler VHF Omni directional Range
[14] Salnt Range
[15] Distance
[16] Radial
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***

 

 

متن کامل را می توانید دانلود نمائید

 

 

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

 

 

ولی در فایل دانلودی متن کامل پایان نامه

 

 

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

 

 

موجود است

برق (مخابرات)بهبود آنتن آرایه ای موج رونده موجبر شکا فدار برای کاهش سطح لوب …

 
رادارها در واقع سنسورهای الکترومغناطیسی هستند که برای موقعیت‏یابی و تعقیب اهداف گوناگون در فضا مورد استفاده قرار می‏گیرند. رادار ها در فرکانس ها و توان های مختلف، برای کاریرد های بسیار متنوع طراحی شده و به کار برده می شوند. مشخصاتی که در رادار ها باید مورد توجه قرار گیرد برد و دقت بالا می باشد. اغلب رادار ها در محدوده فرکانس های باند VHF تا باند C ساخته می شوند. در فرکانس های باند VHF رادار ها دارای برد بلند و دقت پایین بوده و همینطور که فرکانس ها به سمت باند C می روند، برد کاهش پیدا کرده ودر عوض دقت بالاتر می رود. بنابر این بیشترین توجه در رادار ها مربوط به باند های L وS می باشد.در این دو باند یک سازگاری بین دو مساله دقت و برد وجود دارد. بدین معنی که برد رادار نسبتا قابل قبول بوده و رادار دارای دقت خوبی نیز می باشد. در بین این دو باند، باند S نیز بیشترین کاربرد را در سراسر دنیا داشته و بیشترین رادار ها در این باند طراحی و ساخته می شوند.
رادارها در واقع انرژی الکترومغناطیسی را از طریق آنتن در فضا تشعشع[1] می‏کنند. بخشی از انرژی تشعشع شده، به یک شیء که اغلب هدف[2] نامیده می‏شود، برخورد می‏کند و در جهات گوناگون بازتابیده[3] می‏شود. بخشی از این انرژی بازتابیده شده، به سمت رادار منتشر شده و توسط آنتن دریافت می‏گردد و پس از آن، عملیات تقویت و پردازش سیگنال[4]و … بر روی آن انجام می شود.
بنابراین بخش مهمی از سیستم‏های راداری، آنتن است که بسته به مأموریت سیستم، مشخصات گوناگونی می تواند داشته باشد. امروزه استفاده از تکنولوژی رادارهای آرایه فازی[5]که در آن از آنتن های آرایه ای استفاده می شود کاربردهای بسیاری یافته است. آنتن‏های آرایه‏ای مزایای زیادی دارند که از آن جمله می‏توان به توانایی ایجاد جهت دهندگی[6]یا بهره بالا و قابلیت‏های مختلف شکل دهی[7] پرتو اشاره کرد. باند فرکانسی، مأموریت راداری، پهنای باند مورد نظر، میزان توان ارسالی، میزان بهره مورد نظر و … از عوامل تعیین کننده نوع المان به کار رفته در آنتن های آرایه ای است.
آرایه‏های موجبر شکاف‏دار[8] درسال 1943 در دانشگاه McGillدر Montrealابداع گردید..]1[ سادگی هندسه ساختار آنتن‏های موجبری شکاف‏دار، راندمان خوب، توانایی ایجاد امواج با پلاریزاسیون‏های خطی، توانایی ارسال بیم‏های broadside، قابلیت حمل توان بالا و … از ویژگی‏های مهم این نوع آنتن‏ها است که سبب شده در کاربردهای راداری مورد توجه قرار بگیرند. خصوصاً در کاربردهای هوایی این نوع آنتن ها گزینه مناسبی هستند چرا که می توان آنها را بر روی بال ها و بدنه هواپیما قرار دارد. اغلب این نوع آنتن‏ها را می توان در فرکانس های 2 تا 24 گیگا هرتز مورد استفاده قرار داد..]2[
این نمونه آنتن ها به دلیل خواص منحصر به فردی که دارند به صورت گسترده در طراحی وساخت آنتن های آرایه فازی مورد استفاده قرار می گیرند. این آنتن ها بسته به نوع شكاف استفاده شده و نوع ساختار به كار رفته طبقه بندی می شوند. به طور كلی ساختار های این آنتن ها به دو دسته رزونانسی[9] وموج رونده[10] تقسیم می شوند.آرایه های موج رونده به دلیل پهنای باند فرکانسی بالا، در کاربرد های بسیار متعددی استفاده می شوند..]1[
زمانی که نیاز به پلاریزاسیون عمودی می باشد، از شکاف های اریب[11] روی بدنه باریک موجبر استفاده می شود. اما رسیدن به سطح لوب کناری[12] پایین در مورد این آرایه ها همیشه به عنوان یک گلوگاه مطرح بوده است. همچنین شکاف های اریب روی بدنه باریک

دانلود مقالات

 موجبر دارای پلاریزاسیون متقاطع[13] بسیار بدی می باشند. از این رو تا به حال تلاش های بسیار زیادی برای کاهش پلاریزاسیون متقاطع این نمونه از شکاف ها انجام گرفته است که همگی آن ها از لحاظ ساخت بسیار مشکل می باشند.]3-10[ در این تحقیق یک آرایه موج رونده موجبر شکافداری با سطح لوب کناری و پلاریزاسیون متقاطع پایین که از لحاظ ساخت عملی باشد، در باند Sطراحی وشبیه سازی می شود.

در فصل دوم، تعاریف و مقدمات لازم برای طراحی آنتن های آرایه ای و پارامترهای اساسی این آنتن ها بیان خواهد شد و تئوری اساسی تیلور که به طراحی آنتن آرایه ای با سطح لوب کناری پایین می پردازد مورد بررسی و ارزیابی قرار خواهد گرفت.
در فصل سوم برخی از نمونه های پایه آنتن های موجبر شکاف دار مانند انواع شکاف ها مختلف روی بدنه ها موجبر و همچنین انواع آرایه های موجبر شکاف دار و نحوه طراحی آن ها مورد بررسی قرار خواهد گرفت.
[1]radiate
[2]target
[3]reflect
[4]Signal processing
[5]Phase array
[6]Directivity
[7]Beam forming
[8]Slot waveguide array
[9]Standing wave
[10]Travelling wave
[11]Inclined slot
[12]Side lobe level
[13]Cross polarization
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***

 

 

متن کامل را می توانید دانلود نمائید

 

 

 

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

 

 

 

ولی در فایل دانلودی متن کامل پایان نامه

 

 

 

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

 

 

 

موجود است

برق (مخابرات-سیستم)بهینه سازی جایگذاری گره ها در محیط های مختلف برای شبکه های حسگر فراپهن …

کاربرد دقت مورد نیاز
مراقبت داخلی 1 سانتی متر
مکان­یابی ابزاری 1 سانتی متر
راهنمای ربات داخلی 8 سانتی متر
راهنمای عابر پیاده 1 متر
سرویس­های مکان­یابی 3 متر
اطلاعات قطار- اتوبوس- هواپیما 30 متر
مکان­یابی حوادث 1 متر
دره­های شهری 50 سانتی متر

 

جدول1-1: کاربرد و دقت مورد استفاده برای انواع مکان­یابی
همانطور که در این جدول دیده می­شود اکثر کاربردهای مهم مکان­یابی نیاز به دقت­های سانتی­متر تا حداکثر متر دارند.
از ویژگی­های سیگنال­های فراپهن­باند، قابلیت تفکیک سیگنال­ها از مسیرهای مختلف به­ دلیل باریک بودن پالس­ها است. قابلیت دیگر نفوذ و عبور از دیواره­ها و البته انتقال داده با نرخ­های بالا به دلیل پهنای باند وسیع است.
[1] GPS
[2] GLONASS

پایان نامه های دانشگاهی

 

[3] Galileo
[4]Anchor
[5]Mobile Robot
[6]WLAN
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***

 

 

متن کامل را می توانید دانلود نمائید

 

 

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

 

 

ولی در فایل دانلودی متن کامل پایان نامه

 

 

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

 

 

موجود است

برق (مخابرات)تحلیل و شبیه سازی تقویت امواج عبوری از نانولوله هایکربنی فلزی با بایاس DC

فهرست مطالب

 

 

فصل 1-  معرفی نانولوله­های کربنی 1
1-1- دیباچه 3
1-2- گرافین و نحوه ساخت نانولوله­های کربنی از گرافین 3
1-3- انواع نانولوله­های کربنی 9
1-3-1-   نانولوله کربنی زیگزاگ … 13
1-3-2-   نانولوله کربنی مبلی … 14
1-4- مباحث فیزیکی 15
1-4-1-   ناحیه­ی بریلوین 15
1-4-2-   حالت بلاخ 15
1-4-3-   نوسان­های بلاخ 16
1-5- تقویت­کننده لوله­ای موج رونده 17
1-6- کاربرد نانولوله­های کربنی 19
1-7- مطالب پایان­نامه 19
فصل 2-  معادله بولتزمن 21
2-1- دیباچه 23
2-2- رسانایی تفاضلی منفی 23
2-3- معادله بولتزمن 24
2-4- معادله جریانِ رسانایی بر حسب میدان اعمالی 24
فصل 3-  ساختار مناسب برای تطبیق امپدانس نانولوله­های کربنی 33
3-1- دیباچه 35
3-2- مدل مداری نانولوله­های کربنی 35
3-3- عدم تطبیق امپدانس 37
3-4- ساختار کلی موج­بری الکترومغناطیسی و روش برقراری اتصال 38
فصل 4-  شبیه­سازی نانولوله کربنی با بایاسDC و AC 41
4-1- دیباچه 43
4-2- شبیه­سازی نانولوله کربنی با بایاس DC 43
4-3- شبیه­سازی با استفاده از معادله­های بولتزمن و با درنظر گرفتن بایاس DC و AC 49
4-3-1-   نانولوله کربنی از نوع زیگزاگ با ضریب مشخصه (0،12) 49
4-3-2-   نانولوله کربنی از نوع زیگزاگ با ضریب مشخصه (10،0) 54
4-3-3-   نانولوله کربنی از نوع زیگزاگ با ضریب مشخصه (100،0) 56
فصل 5-  شبیه­سازی ساختار مناسب برای تطبیق امپدانس نانولوله­های کربنی 61
5-1- دیباچه 63
5-2- شبیه­سازی ساختار مناسب برای تطبیق امپدانس نانولوله کربنی 63
فصل 6-  نتیجه­گیری­ها و پیشنهادها 71
6-1- نتیجه­گیری­ها 73
6-2- پیشنهادها 74
مرجع­ها……. 75
واژه­نامه فارسی به­انگلیسی 77
واژه­نامه انگلیسی به­فارسی 79



فهرست شکل‌‌ها
شکل (‏1‑1) اوربیتال­های اتمی اتصال کربن-کربن در صفحه گرافین [1]. 4
شکل (‏1‑2) شبکه فضای حقیقی گرافین. سلول واحد به­رنگ خاکستری است [1]. 4
گرافین. ناحیه­ی بریلوین به­رنگ خاکستری نشان داده شده است [1]. 5
شکل (‏1‑4) دیاگرام پاشندگی انرژی گرافین [1]. 7
شکل (‏1‑5) گرافین یک صفحه تک­اتمی از گرافیت است. نانولوله کربنی از لوله کردن گرافین به­شکل استوانه توخالی ایجاد می­شود [1]. 8
شکل (‏1‑6) ساختار شش­گوشه در صفحه مختصات گرافین [2]. 9
شکل (‏1‑7) صفحه مختصات گرافین. مسیر مبلی به­رنگ نارنجی، مسیر نامتقارن به­رنگ سبز و مسیر زیگزاگ به­رنگ آبی است [2]. 10
شکل (‏1‑8) شبکه و سلول واحد فضای واقعی نانولوله کربنی (الف) از نوع زیگزاگ (3،0) و (ب) نانولوله کربنی از نوع مبلی (3،3) [1]. 12
و ناحیه بریلوین (الف) نانولوله کربنی از نوع زیگزاگ (3،0) و (ب) نانولوله کربنی از نوع مبلی (3،3) [1]. 12
شکل (‏1‑10) دیاگرام پاشندگی الکترونی (الف) نانولوله کربنی از نوع زیگزاگ (3،0) و (ب) نانولوله کربنی از نوع مبلی (3،3). ناحیه سایه­خورده زیرِ انرژی فرمی، منطبق با باند ظرفیت است [1]. 14
شکل (‏1‑11) احتمال اشغال الکترون برای (الف) (ب) [5]. 17
شکل (‏1‑12) ساختار تقویت­کننده لوله­ای موج رونده [6]. 17
شکل (‏2‑1) چگالی جریان نرمالیزه­شده برحسب بسامد زاویه­ای برای نانولوله کربنی از نوع زیگزاگ (سبزرنگ) و مبلی (نقطه­چین قرمزرنگ) و ابرشبکه­ها (سیاه­رنگ) [8]. 29
شکل (‏2‑2) چگالی جریان نرمالیزه­شده برحسب میدان الکتریکی DC اعمالی برای نانولوله کربنی از نوع زیگزاگ (سبزرنگ) و مبلی (نقطه­چین قرمزرنگ) و ابرشبکه­ها (سیاه­رنگ) [8]. 30
شکل (‏2‑3) مشخصه رسانایی تفاضلی نرمالیزه­شده برحسب میدان الکتریکی DC اعمالی [8]. 31
شکل (‏3‑1) مدل مداری نانولوله کربنی [1]. 37
شکل (‏3‑2) نمایش عدم تطبیق امپدانس بین نانولوله کربنی و دنیای مقیاس بزرگ [1]. 38
شکل (‏3‑3) ساختار موج­بر هم­صفحه (الف) نمای بالا (ب) نمای کنار [1]. 38
شکل (‏3‑4) ساختار موج­بر هم­صفحه مورد استفاده و نحوه کاهش دادن عرض ناحیه میانی، محلی که نانولوله کربنی قرار خواهد گرفت [1]. 39
شکل (‏4‑1) سلول واحد نانولوله کربنی از نوع زیگزاگ (6،0). 45
شکل (‏4‑2) با گزینش سلولِ واحد نانولوله کربنی از نوع زیگزاگ (6،0)، 4 بار تکرار می­شود. 46
شکل (‏4‑3) حالت بلاخ نانولوله کربنی از نوع زیگزاگ (6،0). 46
شکل (‏4‑4) اعمال بایاس DC به­نانولوله کربنی از نوع زیگزاگ (6،0) با . 47
شکل (‏4‑5) نمودار I-V به­دست آمده برای نانولوله کربنی با .    48
شکل (‏4‑6) رسانایی تفاضلی منفی برای نانولوله کربنی از نوع زیگزاگ (6،0). 49
شکل (‏4‑7) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (12،0) با . 50
شکل (‏4‑8) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (12،0) با . 51
شکل (‏4‑9) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (12،0) با . 51
شکل (‏4‑10) بخش حقیقی رسانایی تفاضلی نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (12،0) با . 53
شکل (‏4‑11) بخش حقیقی رسانایی تفاضلی نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (12،0) با . 53
شکل (‏4‑12) بخش حقیقی رسانایی تفاضلی نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (12،0) با . 54
شکل (‏4‑13) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (10،0) با . 55
شکل (‏4‑14) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (10،0) با . 55
شکل (‏4‑15) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (10،0) با . 56
شکل (‏4‑16) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (100،0) با . 57
شکل (‏4‑17) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (100،0) با . 58
شکل (‏4‑18) جریان نرمالیزه­شده برحسب ولتاژ DC نرمالیزه­شده اعمالی برای نانولوله کربنی از نوع زیگزاگ (100،0) با . 58
شکل (‏5‑1) ساختار موج­بر هم­صفحه برای بررسی عبور موج از درون نانولوله کربنی [14]. 64
شکل (‏5‑2) ساختار پیشنهادی برای بررسی تطبیق امپدانس. 64
شکل (‏5‑3) نحوه قرارگیری نانولوله کربنی (مسیر آبی­رنگ) درون ساختار پیشنهادشده با بزرگ­نمایی محل قرارگیری نانولوله کربنی درون شکافِ شکل (5-2) 65
شکل (‏5‑4) نحوه زمین کردن رسانای کناری در موج­بر هم­صفحه. 66
شکل (‏5‑5) خطوط میدان الکتریکی (الف) مد زوج (ب) مد فرد [1]. 66
شکل (‏5‑6) قسمت حقیقی و موهومی رسانایی دینامیکی نانولوله کربنی از نوع مبلی [15]. 67
شکل (‏5‑7) تطبیق امپدانس ایجادشده با استفاده از ساختار شبیه سازی­شده برای کاهش عدم تطبیق امپدانس. 68
شکل (‏5‑8) سیگنال ورودی (قرمز رنگ) سیگنال خروجی (نارنجی رنگ). 69
شکل (‏5‑9) نمایش تقویت سیگنال. با بزرگ­نمایی کردن شکل (‏5‑8). 69

دانلود مقالات

 

 
 

 

 

فصل 1-        معرفی نانولوله­های کربنی

 

 

 
 

 

 

1-1-         دیباچه

 

 

نانولوله­های کربنی[5] برای اولین بار توسط ایجیما[6] در سال 1991 کشف شدند و پس از آن تلاش­های بسیاری برای پیش­بینی ساختار الکترونیک آن­ها انجام شده است. به­دلیل ویژگی­های منحصربه­فردشان مانند :رسانایی بالا، انعطاف­پذیری، استحکام و سختی بسیار مورد توجه قرار گرفتند [1]. در این فصل به­بررسی ساختار نانولوله­های کربنی و نحوه ساخت آن­ها از گرافین می­پردازیم. انواع نانولوله­های کربنی و نحوه شکل­گیری آن­ها را توضیح داده، مباحث فیزیکی بسیار مهم در نانوساختارها را بیان می­کنیم. همچنین ساختار تقویت­کننده لوله­ای موج رونده[7] را مورد بررسی قرار می­دهیم.

 

 

1-2-         گرافین و نحوه ساخت نانولوله­های کربنی از گرافین

 

 

گرافین یک تک­لایه از گرافیت است. همان­طور که در شکل (‏1‑1) نشان داده شده است، اتصال کربن-کربن در گرافین توسط اوربیتال­های پیوندی، 2sp، اتصال­های s را تشکیل می­دهند و باقیمانده اوربیتال­ها، zp، اتصال­های π را تشکیل می­دهند. اتصال­های π و s به­صورت زیر تعریف می­شوند:
s اتصال­های درون صفحه­ای را تشکیل می­دهد، در حالی­که اتصال­های π، از نوع اتصال­های بیرون صفحه­ای است که هیچ­گونه برخوردی با هسته ندارند. اتصال­های s در گرافین و نانولوله­های کربنی خصوصیت­های مکانیکی قوی را ایجاد می­کنند. به­عبارت دیگر رسانایی الکترون به­طور گسترده از طریق اتصال­های π است. با توجه به­شکل (‏1‑1) می­توان به­این خصوصیت پی برد. همان­طور که دیده می­شود هیچ­گونه صفری[8]‌ در اوربیتال­های اتصال π نیست، الکترون­ها آزادانه اطراف شبکه حرکت می­کنند که اصطلاحا غیرمحلی شده[9] گفته می­شوند و یک شبکه متصل تشکیل می­دهند که نحوه­ی رسانایی گرافین و نانولوله­های کربنی را توضیح می­دهد [1].
شکل (‏1‑1) اوربیتال­های اتمی اتصال کربن-کربن در صفحه گرافین [1].
شبکه فضای حقیقی دو-بعدی گرافین در شکل (‏1‑2) نشان داده شده است. سلولِ واحد گرافین از دو اتم مجزا با فاصله­ی درون­اتمی تشکیل شده است. بردارهای واحدِ آن به­شکل زیر هستند:
(‏1‑1)                           
که در آن ثابت­شبکه است. سلول واحد از دو بردار شبکه تشکیل شده است، که در شکل (‏1‑2) به­رنگ خاکستری است [1].
شکل (‏1‑2) شبکه فضای حقیقی گرافین. سلول واحد به­رنگ خاکستری است [1].
 
شبکه دوبعدی فضای k در شکل (‏1‑3) نشان داده شده است. بردارهای واحد هم­پاسخ 1b و 2b توسط معادله زیر قابل دست­یابی هستند:
(‏1‑2)                                      
که dij دلتای کرونِکر است. در نتیجه:
(‏1‑3)
ثابت شبکه هم­پاسخ است. اولین ناحیه­ی بریلوین[10] گرافین درشکل (‏1‑3) به­رنگ خاکستری نشان داده شده است [1].
شکل (‏1‑3) شبکه فضای k گرافین. ناحیه­ی بریلوین به­رنگ خاکستری نشان داده شده است [1].
مدل اتصال محکم[11] به­طور معمول برای دست­یابی به­شکل تحلیلی پاشندگی انرژی الکترونی و یا ساختار باند E گرافین به­کار می­رود. چون حل معادله شرودینگر عملا در سامانه­های بزرگ غیرممکن است مدل­های تقریبی زیادی با افزایش یافتن پیچیدگی موجود است. تقریب اتصال محکم به­عنوان یکی از ساده­ترین روش­ها شناخته شده است. در این قسمت به­توضیحی مختصر درباره چگونگی دست­یابی به­رابطه پاشندگی الکترونی گرافین پرداخته می­شود. چند فرض اولیه زیر را در نظر می­گیریم:

 

 

 

    • برهم­کنش الکترون-الکترون را نادیده می­گیریم. این یک مدل تک­الکترونی است.

 

 

    • تنها اتصال­های π در رسانایی تاثیر دارند.

 

 

    • ساختار گرافین، بینهایت بزرگ، کاملا متناوب و هیچ­گونه نقصی ندارد.

 

 

برای رسیدن به­تابع پاشندگی گرافین باید معادله شرودینگر برای یک الکترون مورد اعمال پتانسیلِ شبکه، مانند زیرحل شود:
(‏1‑4)           
همیلتونینِ شبکه، U پتانسیل شبکه،m جرم الکترون، jE تابع ویژه وYj انرژی ویژه برای j­امین باند با بردار موج k است. چون این یک مسئله متناوب است، تابع ویژه (یا تابع بلاخ[12]) باید تئوری بلاخ را که به­شکل زیر داده شده برآورده کند:
(‏1‑5)
بردار شبکه براوایس[13] است، r1 و r2 عددهای صحیح هستند [1]. بنابراین تابع موج در فضای هم­پاسخ با بردار شبکه هم­پاسخ متناوب است که q1 و q2 عدد صحیح هستند:
(‏1‑6)
در نهایت ساختار باند گرافین به­شکل زیر تقریب زده می­شود [1]:
(‏1‑7)
پارامتر انتقال g0 با محاسبه­های فرض اولیه[14] حدود 7/2 الکترون­ولت تخمین زده می­شود. همان­طور که انتظار می­رود مقدار­های انرژی مثبت و منفی به­ترتیب به­باند رسانایی و ظرفیت اشاره دارد. پاشندگی گرافین در شکل (‏1‑4) نشان داده شده است. دیده می­شود که گرافین هیچ­گونه باند توقفی ندارد و نیمه­رسانا با باند توقف صفر است. اگرچه کلمه رسانا به­گرافین یا نانولوله­ی کربنی با باند توقف صفر اشاره دارد. نقاطی که از انرژی فرمی عبور می­کنند نقاط kگویند و با لبه­های شش­گوشه[15] برخورد دارند. بیشترین مشخصه­های رسانایی الکترونیک با بایاس کم توسط نواحی اطراف نقاط k تعیین می­شوند [1].
[1] Radio frequencies: RFs
[2] Carbon nanotube: CNT
[3] Traveling wave tube: TWT
[4] Negative differential conductivity: NDC
[5] Carbon nanotubes: CNTs
[6] Ijima
[7] Traveling wave tube: TWT
[8] Null
[9] Delocalized
[10] Brillouinz one: BZ
[11] Tight binding
[12] Bloch
[13] Bravais
[14] First principle
[15] Hexagon
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***

 

 

متن کامل را می توانید دانلود نمائید

 

 

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

 

 

ولی در فایل دانلودی متن کامل پایان نامه

 

 

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

 

 

موجود است

 
مداحی های محرم